skip to main content


Search for: All records

Creators/Authors contains: "Kumar, Swarun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 10, 2024
  2. Free, publicly-accessible full text available July 10, 2024
  3. Free, publicly-accessible full text available May 28, 2024
  4. Free, publicly-accessible full text available May 29, 2024
  5. Free, publicly-accessible full text available May 29, 2024
  6. We present Peekaboo, a new privacy-sensitive architecture for smart homes that leverages an in-home hub to pre-process and minimize outgoing data in a structured and enforceable manner before sending it to external cloud servers. Peekaboo’s key innovations are (1) abstracting common data preprocessing functionality into a small and fixed set of chainable operators, and (2) requiring that developers explicitly declare desired data collection behaviors (e.g., data granularity, destinations, conditions) in an application manifest, which also specifies how the operators are chained together. Given a manifest, Peekaboo assembles and executes a pre-processing pipeline using operators pre-loaded on the hub. In doing so, developers can collect smart home data on a need-to-know basis; third-party auditors can verify data collection behaviors; and the hub itself can offer a number of centralized privacy features to users across apps and devices, without additional effort from app developers. We present the design and implementation of Peekaboo, along with an evaluation of its coverage of smart home scenarios, system performance, data minimization, and example built-in privacy features. 
    more » « less
  7. In this paper, we studied people’s smart home privacy-protective behaviors (SH-PPBs), to gain a better understanding of their privacy management do’s and don’ts in this context. We first surveyed 159 participants and elicited 33 unique SH-PPB practices, revealing that users heavily rely on ad hoc approaches at the physical layer (e.g., physical blocking, manual powering off). We also characterized the types of privacy concerns users wanted to address through SH-PPBs, the reasons preventing users from doing SH-PPBs, and privacy features they wished they had to support SH-PPBs. We then storyboarded 11 privacy protection concepts to explore opportunities to better support users’ needs, and asked another 227 participants to criticize and rank these design concepts. Among the 11 concepts, Privacy Diagnostics, which is similar to security diagnostics in anti-virus software, was far preferred over the rest. We also witnessed rich evidence of four important factors in designing SH-PPB tools, as users prefer (1) simple, (2) proactive, (3) preventative solutions that can (4) offer more control. 
    more » « less
  8. null (Ed.)
    This paper presents Millimetro, an ultra-low-power tag that can be localized at high accuracy over extended distances. We develop Mil-limetro in the context of autonomous driving to efficiently localize roadside infrastructure such as lane markers and road signs, even if obscured from view, where visual sensing fails. While RF-based localization offers a natural solution, current ultra-low-power local-ization systems struggle to operate accurately at extended ranges under strict latency requirements. Millimetro addresses this challenge by re-using existing automotive radars that operate at mmWave fre-quency where plentiful bandwidth is available to ensure high accuracy and low latency. We address the crucial free space path loss problem experienced by signals from the tag at mmWave bands by building upon Van Atta Arrays that retro-reflect incident energy back towards the transmitting radar with minimal loss and low power consumption. Our experimental results indoors and outdoors demonstrate a scal-able system that operates at a desirable range (over 100 m), accuracy (centimeter-level), and ultra-low-power (< 3 uW). 
    more » « less