skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kumar, Swarun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 18, 2025
  2. Recent years have seen the rapid deployment of low-cost CubeSats in low-Earth orbit, many of which experience significant latency (several hours) from the time information is gathered to the time it is communicated to the ground. This is primarily due to the limited availability of ground infrastructure that is bulky to deploy and expensive to rent. This article explores the opportunity in leveraging the extensive terrestrial LoRa infrastructure as a solution. However, the limited bandwidth and large amount of Doppler on CubeSats precludes these LoRa links to communicate rich satellite Earth images—instead, the CubeSats can at best send short messages. This article details our experience in designing LoRa-based satellite ground infrastructure that requires software-only modifications to receive packets from LoRa-enabled CubeSats recently launched by our team. We present Vista, a communication system that adapts encoding onboard the CubeSat and decoding configuration on commercial LoRa ground stations to allow images to be communicated. We perform a detailed evaluation of Vista by leveraging wireless channel measurements from a recent CubeSat (2021), and show that Vista can achieve 55.55% lower latency in retrieving data with 12.02 dB improvement in packet retrieval in the presence of terrestrial interference. We then evaluate Vista on a case study on land-use classification over images transmitted over the CubeSat link to further demonstrate a 4.56 dB improvement in image PSNR and 1.38× increase in classification accuracy over baseline approaches. 
    more » « less
  3. Rendezvous with sperm whales for biological observations is made challenging by their prolonged dive patterns. Here, we propose an algorithmic framework that codevelops multiagent reinforcement learning–based routing (autonomy module) and synthetic aperture radar–based very high frequency (VHF) signal–based bearing estimation (sensing module) for maximizing rendezvous opportunities of autonomous robots with sperm whales. The sensing module is compatible with low-energy VHF tags commonly used for tracking wildlife. The autonomy module leverages in situ noisy bearing measurements of whale vocalizations, VHF tags, and whale dive behaviors to enable time-critical rendezvous of a robot team with multiple whales in simulation. We conducted experiments at sea in the native habitat of sperm whales using an “engineered whale”—a speedboat equipped with a VHF-emitting tag, emulating five distinct whale tracks, with different whale motions. The sensing module shows a median bearing error of 10.55° to the tag. Using bearing measurements to the engineered whale from an acoustic sensor and our sensing module, our autonomy module gives an aggregate rendezvous success rate of 81.31% for a 500-meter rendezvous distance using three robots in postprocessing. A second class of fielded experiments that used acoustic-only bearing measurements to three untagged sperm whales showed an aggregate rendezvous success rate of 68.68% for a 1000-meter rendezvous distance using two robots in postprocessing. We further validated these algorithms with several ablation studies using a sperm whale visual encounter dataset collected by marine biologists. 
    more » « less
  4. Early detection of dental disease is crucial to prevent adverse outcomes. Today, dental X-rays are currently the most accurate gold standard for dental disease detection. Unfortunately, regular X-ray exam is still a privilege for billions of people around the world. In this paper, we ask: Can we develop a low-cost sensing system that enables dental self-examination in the comfort of one's home? This paper presents ToMoBrush, a dental health sensing system that explores using off-the-shelf sonic toothbrushes for dental condition detection. Our solution leverages the fact that a sonic toothbrush produces rich acoustic signals when in contact with teeth, which contain important information about each tooth's status. ToMoBrush extracts tooth resonance signatures from the acoustic signals to characterize the dental condition of each tooth. We further develop a data-driven signal processing pipeline to detect and discriminate different dental conditions. We evaluate ToMoBrush on 19 participants and dental-standard models for detecting common dental problems including caries, calculus, and food impaction, achieving a detection ROC-AUC of 0.90, 0.83, and 0.88 respectively. Interviews with dental experts further validate ToMoBrush's potential in enhancing at-home dental healthcare. 
    more » « less